If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2-12q-20=0
a = 3; b = -12; c = -20;
Δ = b2-4ac
Δ = -122-4·3·(-20)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8\sqrt{6}}{2*3}=\frac{12-8\sqrt{6}}{6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8\sqrt{6}}{2*3}=\frac{12+8\sqrt{6}}{6} $
| 9/3=-1/2g | | 2x+7=11×+7 | | 1/2x+12=13 | | (9/3)=-(1/2)g | | 1/2x+12=11 | | 3w-8=35 | | -6-1.2y=1.2 | | 1+8x=145 | | 1/5+x/4=-1/2 | | 3x-4.8=1.2 | | 2x^2-8x=32 | | 3.25x-2.5=9.75x+4 | | -5(7x-1)+3=-2(3x-1) | | x-2.4=2.4 | | 3/5t-1/10t=t-6/2 | | -9n-2=-83 | | k/6+4=3 | | (5x-3)/7=(2x)/3 | | 7b-2=0 | | 4v=18+2v | | 4y+16.3=53.1 | | 3(x+1)=2(3x-2)-4 | | x+25/5=17 | | 7n+6=125 | | 95=-4(1-5a)-1 | | 14-9x=-8(10x+x) | | 3x+26=54 | | -0.1x+9.17=-0.3x+7.57 | | (6x+1)=37 | | 1/7x1/11=x/14 | | 4(3r-2)=4(2r+3) | | 10x-5=5x+25 |